Uniformly Dispersed and Re-Agglomerated Graphene Oxide-Based Cement Pastes: A Comparison of Rheological Properties, Mechanical Properties and Microstructure
نویسندگان
چکیده
The properties of graphene oxide (GO)-based cement paste can be significantly affected by the state of GO dispersion. In this study, the effects of uniformly dispersed and re-agglomerated GO on the rheological, mechanical properties and microstructure of cement paste were systematically investigated. Two distinct dispersion states can be achieved by altering the mixing sequence: Polycarboxylate-ether (PCE) mixed with GO-cement or cement mixed with GO-PCE. The experimental results showed that the yield stress and plastic viscosity increased with the uniformly dispersed GO when compared to those of re-agglomerated GO cement paste. Moreover, the 3-day compressive and flexural strengths of uniformly dispersed GO paste were 8% and 27%, respectively, higher than those of re-agglomerated GO pastes. The results of X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy analyses demonstrated that uniformly dispersed GO more effectively promotes the formation of hydration products in hardened cement paste. Furthermore, a porosity analysis using mercury intrusion porosimetry revealed that the homogeneous dispersion of GO can better inhibit the formation of large-size pores and optimize the pore size distribution at 3 and 7 days than the re-agglomerated GO.
منابع مشابه
The Influence of Graphene Oxide on Mechanical Properties and Durability Increase of Concrete Pavement
Herein, the performance of graphene oxide (GO) in improving mechanical properties and subsequently reducing the permeability of cement composites used in concrete pavement, is studied. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was...
متن کاملEffect of Graphene Oxide Nanoparticles Addition on Mechanical and Biological Properties of Calcium Phosphate Cement
In the present study, we have evaluated the effects of graphene oxide (GO) addition on the physical-mechanical-biological properties of calcium phosphate cement (CPC). The in vitro cellular responses of MG63 and in vivo tissue responses after the implantation of CPC/GO in parietal bone defects of wistar rats were also investigated. The brushite calcium phosphate cements were prepared by mixi...
متن کاملDynamic Mechanical Properties and Microstructure of Graphene Oxide Nanosheets Reinforced Cement Composites
This paper presents an experimental investigation on the effect of uniformly dispersed graphene oxide (GO) nanosheets on dynamic mechanical properties of cement based composites prepared with recycled fine aggregate (RFA). Three different amounts of GO, 0.05%, 0.10%, and 0.20% in mass of cement, were used in the experiments. The visual inspections of GO nanosheets were also carried out after ul...
متن کاملInfluence of Nano-Particles on Characteristics of MetakaolinContained Cement Paste
The influences of nano-ZrO2 (NZ), nano-TiO2 (NT), nano-Fe2O3 (NF) and nano-Al2O3 (NA) additions on properties of the fresh and hardened cement paste in comparison with the fine cement paste were experimentally studied. Mini slump and flow cone tests were conducted on fresh cement pastes. Moreover the compressive and tensile strength of hardened cement paste were measured. SEM micrographs and XR...
متن کاملINVESTIGATING THE EFFECT OF WELDING PASTE CONTAINING GRAPHENE NANOSHEETS ON BONDING PROPERTIES OF WELDED AISI 304 STAINLESS STEEL PRODUCED BY FLUX-CORED ARC WELDING
In this research, the effect of graphene oxide (GO) and reduced graphene oxide (RGO) nanosheets on the mechanical and microstructural properties of AISI 304 stainless steel welded joints produced by the flux-cored arc welding (FCAW) method was investigated. Light microscope, field emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy (EDS), X-ray diff...
متن کامل